Fertoprotective Therapeutics: What is on the horizon for patients?

Kara N. Goldman, MD Assistant Professor, Reproductive Endocrinology and Infertility Medical Director, Fertility Preservation Northwestern University kara.goldman@nm.org

November 13, 2019

Northwestern

Disclosures

No commercial relationships to disclose

Funding sources

- American Society for Reproductive Medicine
- Foundation for Women's Wellness

Goals and objectives

- 1. Review mechanisms of iatrogenic ovarian injury
- 2. Discuss limitations of current approaches to fertility preservation
- 3. Examine experimental approaches on the horizon for pharmacologic fertoprotection

Cancer survivorship among reproductive-aged women

Delayed childbearing in the context of a cancer diagnosis

Impact of treatment on ovarian reserve

Options for female fertility preservation

Established

Oocyte cryopreservation

Investigational/ experimental

Ovarian tissue cryopreservation Pharmacologic fertoprotection

Limitations of oocyte/embryo cryopreservation

Mechanisms of iatrogenic ovarian injury

Options for female fertility preservation

Established

Investigational/ experimental **Ovarian tissue cryopreservation** Pharmacologic fertoprotection

GnRH agonist mechanism of action in fertility preservation

GnRH agonist pre-clinical data: murine models

Table 1

Preclinical studies in female mice evaluating temporary ovarian suppression with GnRHa during chemotherapy.

Authors	Type of gonadotoxic treatment	Main results	Overall results
Yuce et al., 2004	Cyclophosphamide	* Small protection of primordial follicles	Protection (only against high dose of cyclophosphamide)
Danforth et al., 2005; Kishk et al., 2013; Hasky et al., 2015; Kanter et al., 2016	Cyclophosphamide	 * Dose-dependant protection of the ovarian reserve * Slight protection of growing follicles * Preservation of AMH levels 	Protection
		* Preservation of fertilization rate, early embryo development and improvement of oocyte quality	
Tan et al., 2010	Busulfan	* Protection of primordial and primary follicles	Protection
Lin et al., 2012; Zhang et al., 2013	Cisplatin	* Protection of quiescent and growing follicles	Protection
		* Preservation of AMH levels	
		* No difference in proliferation and apoptosis in the	
		ovaries	
Detti et al., 2014; Horicks et al., 2015;	Cyclophosphamide	* No protection of quiescent and growing follicles	No protection
Horicks et al., 2018		* No protection of FSH and AMH levels	
		* FSH deficiency does not protect ovarian reserve	
		* In vitro exposure to GnRHa does not preserve	
		follicular survival	
		* No difference in proliferation and apoptosis in the	
		ovaries	
Hasky et al., 2015	Doxorubicin	* Compromise vascular recovery	No protection
		* No preservation of AMH levels	
Park et al., 2017	Docetaxel	* Protection of total follicles	Protection
		* Preservation of proliferation within follicles	
		* Decrease of double-strand DNA breaks	

GnRH agonist pre-clinical data: rat models

Table 2

Preclinical studies in female rats evaluating temporary ovarian suppression with GnRHa during chemotherapy.

Authors	Type of gonadotoxic treatment	Main results	Overall results
Ataya et al., 1985; Ataya et al., 1988; Bokser et al., 1990; Ataya et al., 1993; Knudtson et al., 2017	Cyclophosphamide	 * Protection of quiescent and growing follicles * Preservation of LH and E2 levels * Preservation of pregnancy, implantation and live birth rates 	Protection
Montz et al., 1991	Cyclophosphamide	* Improvement of fertility only with agonist	Partial protection
Letterie et al., 2004; Li et al., 2015; Parlakgumus et al., 2015	Cyclophosphamide	 * No protection of ovarian reserve and growing follicles * No preservation of fertility * Increase in liver, pulmonary and splenic hemorrhage * No preservation of AMH levels 	No protection
Matsuo et al., 2007; Li et al., 2013	Cisplatin	 Protection of ovarian reserve Preservation of cyclicity 	Protection
Ozcelik et al., 2010	Paclitaxel and/or cisplatin	 * Protection of ovarian reserve (paclitaxel) * No protection of ovarian reserve (cisplatin) 	Protection only against paclitaxel
Wang et al., 2014	5-fluorouracil	 * Protection of ovarian reserve * Preservation of AMH and FSH levels * Decrease of apoptotic factors 	Protection

Pre-clinical data: female primates, human models

Table 3

Preclinical studies in female primates and human models evaluating GnRHa effect during chemotherapy.

Authors	Model	Type of gonadotoxic treatment	Main results	Overall results
Ataya et al., 1995	In vivo study in rhesus monkeys	Cyclophosphamide	* Protection of ovarian reserve * Preservation of FSH, E2 and P levels * Interruption of cyclicity	Protection
Imai et al., 2007	In vitro study on human granulosa cells	Doxorubicin	* Direct preservation of E2 levels after FSH stimulation	Protection
Bildik et al., 2015	<i>In vitro</i> study on human granulosa cells and ovarian tissue fragments	Cyclophosphamide Paclitaxel 5-fluorouracil TAC regimen	 * No protection of ovarian reserve * No preservation of AMH, E2 and P levels * No upregulation of anti-apoptotic genes * No preservation of the vascular density 	No protection

30 + years of clinical data in GnRH agonists:

- 14 randomized studies in breast cancer:
 - Potential prolongation of ovarian function/ possible decreased POI
 - No clear benefit in fertility preservation
- 2 RCTs in lymphoma: No benefit
- 12 meta-analyses: Potential benefit in preventing POI
- Clear benefit: menstrual suppression in women at bleeding risk

Gonadotropin releasing hormone agonists (GnRHa)

ASCO statement 2013

- · Present both embryo and oocyte cryopreservation as established fertility preservation methods
- Discuss the option of ovarian transposition (oophoropexy) when pelvic radiation therapy is performed as cancer treatment
- · Inform patients of conservative gynecologic surgery and radiation therapy options
- Inform patients that there is insufficient evidence regarding the effectiveness of ovarian suppression (gonadotropin-releasing hormone analogs) as a fertility preservation method, and these agents should not be relied on to preserve fertility
- Inform patients that other methods (eg, ovarian tissue cryopreservation, which does not require sexual maturity, for the purpose
 of future transplantation) are still experimental

NCCN revised guidelines 2015:

"Randomized trials have shown that suppression with GnRH agonist therapy during adjuvant chemotherapy in **premenopausal women with ER-negative tumors**...may preserve ovarian function and diminish the likelihood of chemotherapy-induced amenorrhea"... "smaller historical experiences in patients with ER-positive disease... **conflicting results regarding protective effect on fertility**"

Physiologic ovarian folliculogenesis

FSH-sensitive

Mechanisms of ovarian damage

Promoting and inhibitor factors

mTOR pathway

mTOR pathway critical to primordial follicle activation

Up-regulated PI3K/AKT results in follicular depletion

Potential clinical implications

Hypothesis: mTOR inhibitors preserve ovarian reserve and fertility in mice treated with CY

mTOR inhibitors widely used for benign and malignant conditions

mTORC 1 Inhibitors (Everolimus, RAD001)

- Breast cancer (ER+, HER2 neg) **
- Advanced renal cell carcinoma **
- Subependymal Giant Cell Astrocytoma **
- Tuberous Sclerosis **
- Metastatic pancreatic neuroendocrine tumors **
- Diffuse Large B-Cell Lymphoma
- Epilepsy

25

- Melanoma
- Cholangiocarcinoma

mTORC 1/2 (Dual) Inhibitors (INK128, MLN0128)

- Breast cancer
- Neuroblastoma
- Pancreatic cancer
- Renal cell carcinoma
- Thyroid cancer
- Acute lymphoblastic leukemia
- Non-Hodgkin's Lymphoma

**FDA approved: trade name Afinitor (Novartis)

Down-regulation of mTOR activity in whole ovary lysates of co-treated mice

Phosphorylation of 4EBP-1 and S6 kinase within primordial follicles is decreased after mTOR inhibition

²⁸ Northwestern

Two-fold increase in PMFs per surface area when CY-treated mice are co-treated with mTOR inhibitors

Cytoxan causes follicular burn-out; co-treatment with RAD and INK attenuate this effect

Ratio of total growing to primordial follicles

Northwestern

mTORC1/2 inhibition preserves ovarian function and fertility during genotoxic chemotherapy

Kara N. Goldman^a, Devon Chenette^b, Rezina Arju^b, Francesca E. Duncan^c, David L. Keefe^a, Jamie A. Grifo^a, and Robert J. Schneider^{b,d,1}

Growing landscape of pharmacologic fertoprotection

Growing landscape of pharmacologic fertoprotection

Cyclophosphamide Triggers Follicle Activation and "Burnout"; AS101 Prevents Follicle Loss and Preserves Fertility

Lital Kalich-Philosoph,^{1,2}* Hadassa Roness,¹* Alon Carmely,^{1,2} Michal Fishel-Bartal,^{1,3} Hagai Ligumsky,^{3,4} Shoshana Paglin,¹ Ido Wolf,^{3,4} Hannah Kanety,⁵ Benjamin Sredni,²* Dror Meirow^{1,3}*[†]

www.ScienceTranslationalMedicine.org 15 May 2013 Vol 5 Issue 185 185ra62

Cyclophosphamide Triggers Follicle Activation and "Burnout"; AS101 Prevents Follicle Loss and Preserves Fertility

Lital Kalich-Philosoph,^{1,2}* Hadassa Roness,¹* Alon Carmely,^{1,2} Michal Fishel-Bartal,^{1,3} Hagai Ligumsky,^{3,4} Shoshana Paglin,¹ Ido Wolf,^{3,4} Hannah Kanety,⁵ Benjamin Sredni,²* Dror Meirow^{1,3}*[†]

www.ScienceTranslationalMedicine.org 15 May 2013 Vol 5 Issue 185 185ra62

J. Pineal Res. 2016; 60:336–347 Doi:10.1111/jpi.12316

© 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd Journal of Pineal Research

Melatonin prevents cisplatin-induced primordial follicle loss via suppression of PTEN/AKT/FOXO3a pathway activation in the mouse ovary

J. Pineal Res. 2016; 60:336–347 Doi:10.1111/jpi.12316

© 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd Journal of Pineal Research

Melatonin prevents cisplatin-induced primordial follicle loss via suppression of PTEN/AKT/FOXO3a pathway activation in the mouse ovary

AMH/MIS as a contraceptive that protects the ovarian reserve during chemotherapy

Motohiro Kano^{a,b}, Amanda E. Sosulski^{a,b}, LiHua Zhang^{a,b}, Hatice D. Saatcioglu^{a,b}, Dan Wang^c, Nicholas Nagykery^{a,b}, Mary E. Sabatini^d, Guangping Gao^c, Patricia K. Donahoe^{a,b,1}, and David Pépin^{a,b,1}

^aPediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 02114; ^bDepartment of Surgery, Harvard Medical School, Boston, MA 02115; ^cHorae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01655; and ^dDepartment of Obstetrics and Gynecology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114

Contributed by Patricia K. Donahoe, December 29, 2016 (sent for review December 16, 2016; reviewed by Richard N. Freiman, Bruce D. Murphy, and Teresa K. Woodruff)

39

PNAS

Treatment with MIS protects the ovarian reserve from the primordial follicle depletion induced by chemotherapy

Motohiro Kano et al. PNAS 2017;114:9:E1688-E1697

Northwestern

Kano M et al. PNAS 2017 ©2017 by National Academy of Sciences

Growing landscape of pharmacologic fertoprotection

Inhibition of the c-Abl–TAp63 pathway protects mouse oocytes from chemotherapy-induced death

Stefania Gonfloni ⊡, Lucia Di Tella, Sara Caldarola, Stefano M Cannata, Francesca G Klinger, Claudia Di Bartolomeo, Maurizio Mattei, Eleonora Candi, Massimo De Felici, Gerry Melino & Gianni Cesareni

Nature Medicine 15, 1179–1185(2009) | Cite this article

Cell Death and Differentiation (2013) 20, 987–997 © 2013 Macmillan Publishers Limited All rights reserved 1350-9047/13

www.nature.com/cdd

Rescue of platinum-damaged oocytes from programmed cell death through inactivation of the p53 family signaling network

S-Y Kim¹, MH Cordeiro¹, VA Serna², K Ebbert¹, LM Butler², S Sinha³, AA Mills⁴, TK Woodruff^{*,1,5} and T Kurita^{*,2,5}

<u>J Endocrinol.</u> 2019 Feb 1;240(2):243-256. doi: 10.1530/JOE-18-0370.

Inhibitors of apoptosis protect the ovarian reserve from cyclophosphamide.

Luan Y¹, Edmonds ME¹, Woodruff TK¹, Kim SY^{1,2}.

- In vitro evaluation of the effect of CY metabolites in 3 murine strains
 - identified primordial follicle apoptosis
 - Identified phospho-AKT and cleaved PARP within primordial oocytes 3 days after CY injection

Growing landscape of pharmacologic fertoprotection

Human Reproduction, Vol.29, No.1 pp. 107-113, 2014

Advanced Access publication on November 12, 2013 doi:10.1093/humrep/det391

human reproduction

Sphingosine-I-phosphate prevents chemotherapy-induced human primordial follicle death

Fang Li^{1,2}, Volkan Turan^{1,2}, Sylvie Lierman³, Claude Cuvelier⁴, Petra De Sutter^{3,†}, and Kutluk Oktay^{1,2,†*}

In-vivo delivery of FTY720 prevents radiation-induced ovarian failure and infertility in adult female non-human primates

Mary B. Zelinski, Ph.D.^a, Mark K. Murphy, M.S.^b, Maralee S. Lawson, B.S.^a, Andrea Jurisicova, Ph.D.^C, K. Y. Francis Pau, Ph.D.^a, Natalia P. Toscano, B.S.^a, Darla S. Jacob, B.S.^d, John K. Fanton, D.V.M.^d, Robert F. Casper, M.D.^c, Stephen D. Dertinger, Ph.D.^e, and Jonathan L. Tilly, Ph.D.[†]

Intra-bursal S1P 100and S1P mimetic а FTY720 via 80 osmotic mini-60 pump attenuates 40 b radiation-20induced b oocytes loss in

Veh+Sham Percent follicles remaining Veh+OXI S1P+OXI FTY+OXI a a 2 2 С 0 Primary Secondary Primordial

primates

Oxidative stress, apoptosis, and mTOR

- Oxidative stress induces mitochondrial dysfunction; leads to activation of caspase-3
- S1P may inhibit oxidative stress-induced granulosa cell apoptosis
 - suppressing caspase-3 release via PI3K/AKT signaling pathway

human reproduction

Ceramide-I-phosphate has protective properties against cyclophosphamideinduced ovarian damage in a mice model of premature ovarian failure

Natalia Pascuali¹, Leopoldina Scotti¹, Mariana Di Pietro¹, Gonzalo Oubiña¹, Diana Bas¹, María May², Antonio Gómez Muñoz³, Patricia S. Cuasnicú¹, Débora J. Cohen¹, Marta Tesone¹, Dalhia Abramovich¹, and Fernanda Parborell^{1,*}

C1P decreased CY-induced apoptosis and reduced CY-induced stromal vascular damage

J Assist Reprod Genet (2010) 27:591–597 DOI 10.1007/s10815-010-9463-y

FERTILITY PRESERVATION

Tamoxifen decreases ovarian follicular loss from experimental toxicant DMBA and chemotherapy agents cyclophosphamide and doxorubicin in the rat

Alison Y. Ting · Brian K. Petroff

Primordial Follicle Loss per Ovary

Table II Agents used to protect ovaries from chemotherapy-induced damage.

	•		•	
Protectant	Drug	Target action	Species	Reference
AMH/MIS	СРМ	Accelerated PMF activation	Mouse	Kano et al. 2016
	DOX			Sonigo et al 2018
	Carboplatin			
ATM inhibitors:	CIS	Direct loss of PMFs	Mouse	Tuppi et al. 2018
ETP-46464	DOX			Kim et al. 2018
KU55399				
ATR inhibitors:	CIS	Direct loss of PMFs	Mouse	Kim et al. 2018
ETP-46464	DOX			Luan et al. 2019
AZD6738	CPM			
AS101	CPM	Accelerated PMF activation	Mouse	Kalich-Philosoph et al. 2013
				Di Emidio et al. 2017
Bortezomib	DOX	Atresia	Mouse	Roti Roti et al. 2014
Ceramide-1-phosphate	CPM	Direct loss of PMFs	Mouse	Pascuali et al. 2018
		Atresia		
01.000	010	Vascularization		Dia 1 1 1 1 2 2 1 7
CHK2 inhibitors:	CIS	Direct loss of PMHs	Mouse	Kinaldi et al. 2017
BML277	DOX			Tuppi et al. 2018
LY2603618	CPM			Luan et al. 2019
LT 2606368	C 10	Diana I and DME		T
CKT inhibitors:	CIS	Direct loss of PMI-s	Mouse	Tuppi et al. 2018
CHIR 124	DOX			
DME670462				
PME4900547				
PME5006739				
Crocetin	CPM	Accelerated PME activation	Mouro	Di Emidio et al. 2017
Devrazovano	DOX	Accelerated PMP activation	Mouro	Kropp et al. 2017
Ghrelin	CIS	Accelerated PME activation	Mouse	lang et al. 2017
G.CSE	CIS	Atrosia	Moure	Skaznik-Wikiel et al. 2013
0-03	CIS	Vascularisation	Tiouse	Akdemir et al 2014
Imatinib	CIS	Direct loss of PMEs	Mouse	Kim et. 2013
	0.0	Atresia	110030	Majani et al. 2012
		The care		Zamah et al. 2011
				Rinaldi et al. 2017
				Tuppi et al. 2018
				Gonfloni et al. 2009
				Kim et al. 2018
Luteinizing Hormone	CIS	Direct loss of PMFs	Mouse	Rossi et al. 2017
		Atresia		Tuppi et al. 2018
MDRI	CPM	Delivery to ovary	Mouse	Brayboy et al. 2013; 2017
				Salih 2011
				Wang et al. 2018
Melatonin	CIS	Accelerated PMF activation	Mouse	Jang et al. 2016
Mesna	CIS	Atresia	Rat	Li et al. 2013
Mirtazapine	CIS	Atresia	Rat	Altuner et al. 2013
mTORC inhibitors:	CPM	Accelerated PMF activation	Mouse	Adhikari et al. 2013

Rapidly growing field of fertoprotection

Table II Continued

Protectant	Drug	Target action	Species	Reference
Everolimus (RAD001)	CIS			Goldamn et al. 2017
INK128				Zhou et al. 2017
Rapamycin				Tanaka et al. 2018
Resveratrol	CIS	Atresia	Rat	Ozcan et al. 2015
Sphingosine-I - phospate	CPM	Direct loss of PMFs	Mouse	Morita et al.2000
			Rat	Li et al. 2017
			Human	Li et al. 2014
				Meng et al. 2014
Sildenafil Citrate	CIS	Atresia	Rat	Taskin et al. 2015
Tamoxifen	CPM	Direct loss of PMFs	Rat	Ting and Petroff 2010
		Inflammation	Human	Piasecka-Srader et al. 2015
				Sverrisdottir et al. 2009
				Sverrisdottir et al. 2011

Limitations of existing data

- Pre-clinical
- Highly heterogeneous studies
 - Timing of administration
 - Animal models
 - Chemotherapy regimens

Qualities important in a fertoprotective agent

Re-purposed drugs?

A win-win for women's reproductive health: A nonsteroidal contraceptive and fertoprotective neoadjuvant

Teresa K. Woodruff^{a,1}

PNAS | February 28, 2017 | vol. 114 | no. 9 | 2101–2102

(and a word of cautious optimism):

"In the case of a fertoprotective therapy... we may protect the oocyte from death but damage to the germline may persist, increasing the likelihood of birth defects." - Teresa K. Woodruff, PhD

Thank you

Northwestern University Fertility and Reproductive Medicine

Kristin N. Smith Serdar Bulun, MD Lia Bernardi, MD Christina Boots, MD Eve Feinberg, MD Tarun Jain, MD Helen Kim, MD Sue Klock, PhD Angela Lawson, PhD Mary Ellen Pavone, MD Jared Robins, MD Amelia Swanson, PhD John Zhang, PhD

Northwestern Center for Reproductive Science

Francesca Duncan, PhD Teresa Woodruff, PhD

New York University Langone Fertility Center

Jamie Grifo, MD, PhD David Keefe, MD

Schneider Laboratory

Bob Schneider, PhD Devon Chenette, PhD Lauren Larkin, PhD Abhi Ghilash

Alliance for Fertility Preservation

Joyce Reineke, JD

References

- National Cancer Institute, Division of Cancer Control and Population Science Surveillance Research Program, Cancer Statistics Branch. Surveillance, Epidemiology, and End Results (SEER) Program. U.S. population data: 1969-2013. Released January 2015. Available at <u>www.seer.cancer.gov/popdata</u>. Accessed February 15, 2015.
- Phillips et al. Survivors of Childhood cancer in the United States: prevalence and burden of morbidity. Cancer Epidemiol Biomarkers Prev (2015)
- Mullan F. Seasons of survival: reflections of a physician with cancer. N Engl J Med 1985;313:270-273.
- Miller K, Pandey M et al. Cancer survivorship and models of survivorship care: a review. Am J Clin Oncol 2015;38(6):627-33.
- Haukvik UKH, Dieset I, Bjoro T, Holte H, Fossa SD. Treatment-related premature ovarian failure as a long-term complication after Hodgkin's lymphoma. Annals of Oncology 2006;17(9): 1428-1433.
- M, Neyman N et al. SEER cancer statistics review, 1975-2007. Based on November 2009 SEER data submission, posted to the SEER web site 2010. Bethesda, MD: National Cancer Institute, 2010. Available at <u>http://seer</u>. Cancer.gov/csr/1975_2007. Accessed February 15, 2015.
- Kano M, Sosulski AE, Zhang L, et al. AMH/MIS as a contraceptive that protects the ovarian reserve during chemotherapy. Proc Natl Acad Sci USA 2017;114(9):E1688-E1697.
- Di emidio G, Rossi G, Bonomo I, et al. The natural carotenoid crocetin and the synthetic tellurium compound AS101 protect the ovary against cyclophosphamide by modulating SIRT1 and mitochondrial markers. *Oxid Med Cell Longev* 2017;2017:8928604.
- Woodruff TK. A win-win for women's reproductive health: a nonsteroidal contraceptive and fertoprotective neoadjuvant. Proc Natl Acad Sci USA 2017;114(9):2101-2102.
- Spears et al. Ovarian damage from chemotherapy and current approaches to its protection. Hum Reprod Update 2019; doi:10.1093/humupd/dmz027.
- Goldman KN, Chenette D, Arju R et al. mTORC1/2 inhibition preserves ovarian function and fertility during genotoxic chemotherapy. Proc Natl Acad Sci USA 2017;114(12):3186-3191.
- Wood-Trageser M, Rajkovic A. Genomic markers of ovarian reserve. Sem Reprod Med 31(6):399-415.
- Li F, Turan V et al. Sphingosine-1-phosphate prevents chemotherapy-induced primordial follicle cell death. Hum Reprod 2014; doi.10/1093/humreprod.
- Nakahara T, Iwase A, Nakamura T, et al. Sphingosine-1-phosphate inhibits H2P2-induced granulosa cell apoptosis via the PI3K/AKT signaling pathway. Fertil Steril 2012; 98(4):1001-1008.

References

- Goodman LR, Balthazar U, Kim J, Mersereau JE. Trends of socioeconomic disparities in referral patterns for fertility preservation consultation. Hum Reprod 2012 Jul;27(7):2076-81.
- Bastings L, O Baysal, Beerendonk CCM, Braat DDM, Nelen WLDM. Referral for fertility preservation counselling in female cancer patients. Hum Reprod 2014; 29(10):2228-2237.
- Kim J, Deal AM, Balthazar U, Kondapalli LA, Gracia C, Mersereau JE. Fertility preservation consultation for women with cancer: are we helping patients make high-quality decisions? Reprod Biomed Online 2013; 27(1):96-103.
- Kirchhoff AC, Yi J, Wright J, Warner EL, Smith KR. Marriage and divorce among young adult cancer survivors. J Cancer Surviv 2012;6(4):441-50.
- Jones G, Hughes J, Mahmoodi N, Smith E, Skull J, Ledger W. What factors hinder the decision-making process for women with cancer and contemplating fertility preservation treatment? Hum Reprod Update 2017;23(4):433-457.
- Cakmak H, Katz A, Cedars MI, Rosen MP. Effective method for emergency fertility preservation: random-start controlled ovarian stimulation. Fertil Steril 2013;100(6): 1673-80.
- Lawson AK, Klock SC, Pavone ME, Hirshfeld-Cyton J, Smith KN, Kazer RR. Prospective study of depression and anxiety in female fertility preservation and infertility patients. Fertil Steril 2014;102:1377-1384.
- Kim J, Turan V, Oktay K. Long-term safety of letrozole and gonadotropin stimulation for fertility preservation in women with breast cancer. J Clin Endocrinol Metab 2016;101(4):1364-71.
- Lambertini M et al. Cancer and Fertility preservation: international recommendations from an expert meeting. BMC Medicine 2016;14:1.
- Pacheco F and Oktay K. Current success and efficiency of autologous ovarian transplantation: a meta-analysis. Reprod Sci 2017;24(8):1111-1120.
- Domar AD et al. The psychological impact of infertility: a comparison with patients with other medical conditions. J Psychosom Obstet Gynaecol 1993;45-52.
- Moravek M et al. Long-term outcomes in cancer patients who did or did not pursue fertility preservation. Fertil Steril 2018;109(2):349-355.
- Letourneau JM et al. Fertility preservation before breast cancer treatment appears unlikely to affect disease-free survival at a median follow-up of 43 months after fertility-preservation consultation. Cancer 2019; doi:10.1002/cncr.32546.
- Spears et al. Ovarian damage from chemotherapy and current approaches to its protection. Hum Reprod Update 2019; doi:10.1093/humupd/dmz027