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Abstract

A three-dimensional culture system supports the development of primate preantral follicles to the antral stage with appreciable steroid

production. This study assessed i) whether in vitro developmental competence of follicles is age dependent, ii) the role of gonadotropins

and insulin in supporting folliculogenesis, and iii) anti-Müllerian hormone (AMH) and vascular endothelial growth factor (VEGF)

production by growing follicles. Ovaries were obtained from prepubertal, young, and older adult rhesus macaques. Secondary follicles

were encapsulated into alginate beads and cultured individually for 40 days in media containing 0.05 or 5 mg/ml insulin, with or without

recombinant human (rh) FSH (500 mIU/ml). No follicles survived in the culture without rhFSH. In the presence of rhFSH, survival was

lower for follicles from older animals, whereas growth, i.e. follicle diameter, was less by day 40 for follicles from prepubertal animals. The

surviving follicles were categorized as no-grow (NG; %250 mm), slow-grow (SG; 250–500 mm), and fast-grow (FG; R500 mm) according

to their diameters. SG follicles cultured with 5 mg/ml insulin produced more ovarian steroids than those cultured with 0.05 mg/ml insulin

by week 5. SG and FG follicles produced more AMH and VEGF than the NG, and levels peaked at weeks 2 and 5 respectively. After

100 ng/ml rh chorionic gonadotropin treatment for 34 h, more healthy oocytes were retrieved from young adults whose follicles were

cultured with 5 mg/ml insulin. This culture system offers an opportunity to characterize the endocrine and paracrine function of primate

follicles that influence follicle growth and oocyte maturation.
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Introduction

Early follicular development is a dynamic process that is
regulated by complex interactions between gonado-
tropins and local factors (Gougeon 1996). Although
progress in understanding early folliculogenesis has
been made, particularly in mice through gene manipu-
lation (Matzuk 2000, Drummond 2006), the regulation
and dynamics of primate folliculogenesis, aside from
phenotypic analysis in human (Chand et al. 2010, Ewens
et al. 2010), remain poorly understood. Recently,
feasibility of using tissue engineering principles to
develop a three-dimensional (3D) matrix that supports
follicle development was successfully demonstrated in
mice (Xu et al. 2006, West et al. 2007). This 3D approach
yielded antral follicles with mature oocytes that, when
inseminated in vitro, fertilized and, following embryo
transfer, produced live offspring (Xu et al. 2006).
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Applying encapsulated 3D follicle culture to the
primate, it was possible to grow rhesus monkey preantral
follicles through the small antral stage with appreciable
levels of ovarian steroid production (Xu et al. 2009a).
This technique provides a valuable in vitro model
to study the process and regulation of folliculogenesis
in intact individual follicles in primates. However,
further advances are needed to develop an adequate
milieu for macaque follicular growth and differentiation
that provides oocytes competent for fertilization and
development. The major challenges include i) the length
of time for a follicle to grow from preantral to the small
antral stage at which it can be selected for final
maturation, which is estimated to be 65 days in vivo
(Gougeon 1998), and ii) the large size of a mature
preovulatory follicle with a fertilizable oocyte, which is
3–6 mm in diameter in macaques.
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Although full knowledge of the milieu for follicle
growth in vivo is still lacking, there is evidence that the
adequate levels of certain hormones are essential for the
growth of healthy follicles in vitro (Picton et al. 2008).
The pituitary gonadotropin, FSH, may promote, if not be
essential for, follicle growth in culture systems. For
example, FSH administration not only maintained the
morphological integrity of caprine preantral follicles, but
also stimulated the activation of primordial follicles and
the growth of activated follicles in the culture (Matos
et al. 2007). In 3D matrix systems, FSH increased the
diameter of mouse (Xu et al. 2006), monkey (Xu et al.
2009a), and human (Xu et al. 2009b) follicles in vitro. LH
may also enable primary and secondary follicles to
respond to later LH-dependent growth, by inducing early
differentiation of the theca cells, during follicle culture in
mice (Cortvrindt et al. 1998, Wu et al. 2000). At later
stages of culture, monkey follicles in the media
supplemented with LH tended to produce more estradiol
(E2), which may be attributed to increased presence of
theca cell (Xu et al. 2009a). There is also an increasing
body of evidence that insulin may stimulate follicular
growth in vitro (Wright et al. 1999). Insulin, as a survival
factor, reduces the proportion of atretic follicles in early
stages of human follicle culture, hence improving the
overall viability of the follicles (Louhio et al. 2000).

It is also likely that paracrine factors modulate
preantral and antral follicle development in primates
(Albertini et al. 2001, Eppig 2001). Growing evidence
suggests that anti-Müllerian hormone (AMH) plays a key
role in the early stages of folliculogenesis (Durlinger
et al. 2002, Carlsson et al. 2006). AMH could affect early
stages of human follicular development by enhancing
recruitment, survival, and/or growth during ovarian
tissue culture (Schmidt et al. 2005). Also, the angiogen-
esis process is a fundamental activity in the ovary,
specifically during follicular growth, atresia, ovulation,
and luteinization. Angiogenic factors produced by the
follicle, such as vascular endothelial growth factor
(VEGF), may promote vascular changes during follicle
growth (Hazzard & Stouffer 2000). However, they may
also have other roles, as suggested by evidence that
VEGF maintains follicular ultrastructural integrity and
promotes the growth of caprine preantral follicles
during ovarian tissue culture (Bruno et al. 2009).
Thus, AMH and VEGF may be valuable markers of
follicle maturation and function. However, knowledge
Table 1 Total and average yield of follicles from animals of different age gro

Without FSH

Age group
(nZ3/group)

Total yield
(meanGS.E.M.)

5 mg/ml
insulin

0.05 mg/ml
insulin

Prepubertal 204 (68G4) 24 12
Young adult 324 (108G0) 24 12
Older adult 360 (120G7) 24 12
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surrounding the dynamics of AMH and VEGF production
and regulation in the growing follicles is unknown,
especially in primates.

Using encapsulated 3D culture of nonhuman primate
preantral follicles, this study assessed whether the
developmental competence of follicles was dependent
upon maternal age, and evaluated the role of gonado-
tropins, FSH alone or with sequential addition of LH, and
insulin to support folliculogenesis. Additionally, studies
were conducted to investigate the ovarian steroids
(androstenedione, A4; E2; and progesterone, P4) and
paracrine factors (AMH and VEGF) produced by
individual cultured follicles that may influence follicle
growth and health.
Results

Follicle survival and growth

Total and average number of secondary follicles isolated
from different age groups of animal and the follicle
distribution in different culture conditions are sum-
marized in Table 1. Follicle survival could be identified
clearly with viable follicles exhibiting an intact base-
ment membrane versus atretic follicles having dark
granulosa cells and denuded oocytes (Xu et al. 2009a).
By culture week 2, all follicles cultured in the absence of
FSH underwent atresia regardless of animal age and
culture condition, whereas more than 50% of the
follicles cultured with FSH survived.

For follicles cultured in the presence of FSH and
high-dose insulin, there was no difference in survival
rate between prepubertal (59G8%) and young adult
(55G11%) animals by culture week 5. However, the
survival rate was less (P!0.05) for follicles from older
adult animals (15G5%) by culture week 5 than those from
prepubertals and young adults. The lower insulin dose
and LH administration had no effect on follicle survival for
animals in all the three age groups (data not shown).

At the beginning of the culture, follicle diameters did
not differ among the age groups and culture conditions
(data not shown). However, during culture, three distinct
cohorts of follicles were observed based on their growth
rate. For example, for follicles cultured with FSH and
high-dose insulin (Fig. 1A), a cohort remained similar in
size to the initial secondary follicles without significant
change in diameters through 5 weeks of culture, ranging
from 148G3 to 195G40 mm in young adult animals
ups and their assignment to experimental culture conditions.

With FSH

5 mg/ml
insulin

5 mg/ml
insulinCLH

0.05 mg/ml
insulin

0.05 mg/ml
insulinCLH

48 48 36 36
72 72 72 72
84 84 84 72
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(Fig. 1B), and were termed ‘no-grow (NG)’ follicles.
Another cohort doubled (P!0.05) their diameters, from
158G8 to 376G25 mm in young adult animals (Fig. 1C),
and were termed ‘slow-grow (SG)’ follicles. Finally,
another group of follicles increased (P!0.05) their
diameters by a minimum of threefold, from 165G8 to
667G58 mm in young adult animals (Fig. 1D), and were
termed ‘fast-grow (FG)’ follicles. The NG follicles from
prepubertal and older, as well as from young adults were
evident in all ovarian samples (Fig. 1B). The SG pattern
also appeared in follicles from both young and older
adult animals (Fig. 1C), but the SG follicles from young
adults reached larger (P!0.05) diameters by culture
week 5 than those from the prepubertal group (Fig. 1C).
The FG follicles were only collected from young adult
animals and represented 43% of the total cohort;
whereas 9% were NG and 48% were SG follicles. The
percentage of NG and SG follicles were 14 and 86%
respectively for the prepubertal group. In contrast, there
was a greater proportion of NG (69%) and a smaller
proportion of SG follicles (31%) collected from the older
adult group (Fig. 1A). An antral cavity was evident within
3 weeks of culture for all the SG and FG follicles.

The lower dose of insulin did not alter the growth rate
of the NG follicles (Fig. 2A) and SG follicles (Fig. 2B)
from young adult animals, as well as from the
prepubertal and older adult monkeys (data not shown).
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Figure 1 Macaque follicle survival and growth in media containing FSH
and high-dose insulin, without LH supplementation at day 30. Number
of three cohorts of surviving follicles from different age groups at week
5 of culture (panel A) and the growth patterns for the no-grow (panel B),
slow-grow (panel C), and fast-grow (panel D) follicles from prepubertal
(nZ3), young (nZ3), and older (nZ3) adult animals during culture.
Significant differences over time (lowercase) or between the age groups
(uppercase) are indicated by different letters (P!0.05). Data are
presented as the meanGS.E.M. Representative follicle pictures in panels
B–D are from culture day 1 (left) and day 40 (right). Scale barZ250 mm.
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Figure 2 Insulin effect on patterns of macaque follicle growth. Growth
patterns of no-grow (panel A), slow-grow (panel B), and fast-grow
(panel C) follicles from young adult animals (nZ3) during culture in
media containing FSH and either low- or high-dose insulin, without LH
supplementation at day 30. Significant differences over time (lower-
case) or between the insulin dosage groups (uppercase) are indicated
by different letters (P!0.05). Data are presented as the meanGS.E.M.
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However, even though the FG follicles maintained a
similar growth rate between the low- and high-dose
insulin-treated groups for the first 3 weeks of culture, the
follicle diameters became larger (P!0.05) in the high-
dose insulin cultures than in the low-dose cultures on
weeks 4 and 5 (Fig. 2C).

LH supplementation at culture day 30 did not promote
further growth of the follicles regardless of animal age
and culture condition (data not shown).
Oocyte maturation and diameter

Following exposure of antral follicles (SG and FG) to
recombinant human chorionic gonadotropin (rhCG),
healthy, as well as degenerate (dark and condensed
cytoplasm), oocytes were obtained during retrieval.
There were also follicles that did not yield oocytes.
Reproduction (2010) 140 685–697



Table 2 Characteristics of oocytes retrieved from macaque antral follicles on day 40 of 3-dimensional culture, 34 h after addition of recombinant
human chorionic gonadotropin (rhCG), for different age groups.

Number (n ) of Diameter (mm)*

Age group Follicles harvested Oocytes retrieved Degenerate oocytes GV-intact oocytes GV-intact oocytes

Prepubertal 14 8 5 3 69G10a

Young adult
(slow-grow) 25 13 7 6 85G3a,b

(fast-grow) 10 7 1 6 99G4b

Older adult 5 2 0 2 71G27

*Values are the meanGS.E.M. a,bDifferent letters indicate significant differences within the column (P!0.05).
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Despite rhCG treatment, all the healthy oocytes
remained at the germinal vesicle (GV)-intact stage at
retrieval (Table 2), and no oocytes matured to metaphase
I (MI) or MII stage during 48 h in vitro after removal from
the follicles. Oocytes retrieved from follicles under all
the culture conditions were combined for analysis of
oocyte maturation among the different age groups. Of
the 20 oocytes retrieved from the young adult group,
60% were GV-intact oocytes. Furthermore, from the FG
follicles in this group, 86% of the oocytes retrieved were
at the GV-intact stage. In contrast, 38% of the oocytes
retrieved from the prepubertal animals were at the
GV-intact stage, and only two GV-intact oocytes were
retrieved from the older adult group.

The oocyte diameters of the FG, but not the SG,
follicles from young adults were larger (P!0.05) than
those from the prepubertal group (Table 2). Oocyte
retrieval from follicles of young adult animals was
analyzed among the different culture conditions. The
highest percentage of GV-intact oocytes, 70%, were
observed from the follicles cultured with FSH, high-dose
insulin, and LH. However, there was no significant
difference in oocyte diameters among the different
culture conditions (Table 3).
Follicular steroids

Since media steroid levels from the NG and SG follicles
of prepubertal and older adult animals showed similar
trends as those from young adults over the 5-week
culture period (data not shown), only the data and
analyses from the young adult group are presented in
graphical form. For the NG follicles cultured within FSH
and either low- or high-dose insulin, E2 levels remained
Table 3 Characteristics of oocytes retrieved from young adult macaques fol
gonadotropin (rhCG) exposure), for different culture conditions.

Numb

Media type Follicles harvested Oocytes retrieved

0.05 mg/ml insulin 8 2
0.05 mg/ml insulinCLH 5 3
5 mg/ml insulin 6 5
5 mg/ml insulinCLH 16 10

*Values are the meanGS.E.M.
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at baseline throughout the culture period (Fig. 3A). For
the SG (Fig. 3B) and FG (Fig. 3C) follicles cultured with
FSH and high-dose insulin, E2 concentrations started
rising by weeks 2–3 and were higher (P!0.05) by weeks
3–4 than those observed in the beginning of culture. E2

levels for the SG follicles cultured with FSH and low-
dose insulin stayed at baseline and were lower (P!0.05)
than those of the high-dose insulin-treated follicles at
culture weeks 4 and 5 (Fig. 3B). There were no samples
available for the FG follicles cultured with low-dose
insulin. Similar patterns were also observed for A4 and
P4 levels during the culture interval (e.g. SG follicles,
Fig. 4A and E).

In cultures of the SG follicles, levels of A4 (Fig. 4A), E2

(Fig. 4C), and P4 (Fig. 4E) did not increase between
weeks 4 and 5 in the presence of FSH and high-dose
insulin. However, the addition of LH at culture day 30
increased (P!0.05) A4 (Fig. 4B), E2 (Fig. 4D), and P4

(Fig. 4F) production between pre-LH (week 4) and
post-LH (week 5) exposure. In contrast, LH treatment
had no effect on media steroid concentrations for the
SG follicles cultured with low-dose insulin, which
remained at baseline levels throughout the 5 weeks of
culture (Fig. 4A–F).

In contrast to the SG follicles, the media levels of
A4 (Fig. 5A), E2 (Fig. 5B), and P4 (Fig. 5C) of the FG
follicles increased (P!0.05) between 4 and 5 weeks of
culture in the presence of FSH and high-dose insulin.
Moreover, LH supplementation at culture day 30 had no
effect on the pattern or levels of steroids during culture
week 5 (Fig. 5A–C).

Figure 6 summarizes steroid levels produced by the
SG follicles from monkeys of various ages during culture
week 5. Follicles from young adult animals displayed
licles on day 40 of culture (34 h post recombinant human chorionic

er (n ) of Diameter (mm)*

Degenerate oocytes GV-intact oocytes GV-intact oocytes

1 1 95
1 2 80G6
3 2 92G7
3 7 95G5
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Figure 4 Insulin and LH effect on steroid production by slow-grow
macaque follicles. Androstenedione (panels A and B), estradiol (panels
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higher (P!0.05) A4 (Fig. 6A), E2 (Fig. 6B), and P4

(Fig. 6C) concentrations than those from prepubertal
and older adult monkeys, when cultured with FSH and
high-dose insulin. Follicles from prepubertal animals
produced less (P!0.05) E2 (Fig. 6B) and more (P!0.05)
P4 (Fig. 6C) than follicles from older adults. While
lacking samples from prepubertals and older adults,
follicles from young adults cultured with FSH and high-
dose insulin produced higher (P!0.05) amounts of
ovarian steroids than those cultured with low-dose
insulin (Fig. 6A–C).
C and D), and progesterone (panels E and F) levels for slow-grow
follicles from young adult animals (nZ3) during culture in media
containing FSH and either low- or high-dose insulin, without (panels A,
C and E) or with (panels E, D and F) LH supplementation at day 30.
Significant differences over time (lowercase) or between the insulin
dosage groups (uppercase) are indicated by different letters (P!0.05).
Data are presented as the meanGS.E.M.
Anti-Müllerian hormone

When follicles from young adult monkeys were cultured
with FSH and high-dose insulin, the media AMH levels
produced by the NG follicles did not change throughout
www.reproduction-online.org
the 4 weeks of culture (Fig. 7). In contrast, AMH levels
of the SG and FG follicles peaked (P!0.05) at week 2
and then declined (P!0.05) to basal levels by week
3 (Fig. 7). Although diameters of the NG, SG, and FG
follicles were not different on week 1 (data not shown),
the levels of AMH produced by the SG and FG follicles
were higher (P!0.05) than those produced by the NG
follicles. Also, AMH levels during week 2 were distinct
(P!0.05) among all the three follicle categories (Fig. 7).
By week 3, all cultured follicles had basal levels of AMH
that remained low even after LH treatment in week 5
(data not shown). Similar patternswere obtained for AMH
concentrations throughout the culture period regardless
of animal age and culture condition (data not shown).
Vascular endothelial growth factor

When follicles from young adult monkeys were cultured
with FSH and high-dose insulin, the media VEGF levels
produced by the NG follicles did not change throughout
the 5 weeks of culture (Fig. 8). In contrast, VEGF levels
of the SG and FG follicles increased markedly (P!0.05)
Reproduction (2010) 140 685–697
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at weeks 4 and 5 (Fig. 8). Also, VEGF levels during weeks
4 and 5 were distinct (P!0.05) among all the three
follicle categories. By culture week 5, the presence of LH
did not alter VEGF concentrations for the SG or FG
follicles (data not shown). Similar patterns were obtained
for VEGF concentrations throughout 5 weeks of
culture regardless of animal age and culture condition
(data not shown).
Discussion

As described previously (Xu et al. 2009a), an alginate-
based 3D culture system will support survival and
growth of preantral (secondary) follicles from rhesus
monkeys to the small antral stage. In this study, a greater
percentage of secondary follicles from ovaries of
prepubertal and young adult monkeys survived during
the 5-week culture period than those from older adult
Reproduction (2010) 140 685–697
animals. Our previous study demonstrated that follicles
isolated during the follicular phase of the menstrual
cycle had a higher survival rate than those from the luteal
phase, but this may relate to differences in follicle size
at onset of culture (Xu et al. 2009a). The mechanisms
resulting in lower survival rate of follicles from older
adult monkeys remain unclear, but it is not due to
differences in follicle sizes at collection. Unknown
factors responsible for the development of preantral
follicles may protect them from programmed cell death
(Orisaka et al. 2006). Preantral follicles from older
animals may lack these apoptosis inhibiting factors and
may not survive in culture. Alternatively, local factors
inducing follicle atresia during early follicular develop-
ment (Thompson et al. 2004) may increase during aging
and result in decreased survival rate of preantral follicles
from older animals. This feature of ovarian aging may be
relevant to the clinical observation that the oocyte
quality and fecundity, either spontaneous or assisted,
decline by 30 years of age in premenopausal women
(Gougeon 2005).

FSH is a critical hormone for survival of macaque
secondary follicles (125–225 mm in diameter) in the
alginate-based 3D culture system, regardless of animal
age. Recently, Kreeger et al. (2005) examined the
importance of FSH for survival, growth, and cell activity
in murine secondary follicles cultured in a similar
system. Notably, survival of multilayered follicles
(150–180 mm) was markedly improved by exposure to
FSH, in a dose-dependent manner, whereas survival of
secondary follicles (100–130 mm) was not altered by FSH
exposure. The authors distinguished these groups of
secondary follicles as FSH dependent versus FSH
responsive, as the smaller follicles still exhibited dose-
dependent increases in growth, lactate production, and
steroid secretion. Thus, the larger macaque secondary
follicles appear FSH dependent comparable to those of
the mouse, or perhaps even more so since some murine
follicles survived in the absence of FSH. Likewise, FSH
acts as a survival factor for human preantral follicles
during ovarian tissue culture (Wright et al. 1999). These
data are consistent with the evidence that FSH recep-
tors are expressed in preantral follicles of various
species, including primates (Gougeon 1996, Findlay &
Drummond 1999). However, an essential role for FSH
in survival, as well as in growth, of preantral follicles
in vitro is counter to evidence in vivo that human
follicles survive and some grow to the small antral
stage in conditions of low-to-nondetectable FSH levels,
e.g. in infancy (Peters 1979) and in women during
pregnancy (Khattab & Jequier 1979), in disorders of
hypogonadotropic hypogonadism (Goldenberg et al.
1976), and selective FSH (Rabin et al. 1972) or FSH
receptor (Aittomäki et al. 1996) defects. Perhaps, the
ovarian milieu/tissue in vivo, in the absence or presence
of gonadotropins, can promote survival of small
growing follicles.
www.reproduction-online.org
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The surviving macaque secondary follicles could be
categorized into three groups (NG, SG, and FG)
according to their growth rate, i.e. diameters achieved
by culture day 40. This phenomenon was not documen-
ted in previous studies on in vitro follicle growth. During
similar 3D culture, mouse secondary follicles grew from
!200 to 400 mm diameter, reached the antral stage
within 8 days, and provided mature oocytes for IVF
(Spears et al. 1998, Xu et al. 2006). Any diversity in
growth rate among murine follicles may be less evident
www.reproduction-online.org
due to the shorter culture period and smaller increase
(doubling) in follicle diameter. In initial studies on
human secondary follicles (Xu et al. 2009b), the
differences in follicle growth rate may not have been
obvious due to small sample size. However, it was
observed that 75% of the surviving follicles developed
visible antrum, while others remained at multilayered
stage through 30 days of culture. The current data
suggest that the population of small secondary follicles
in the primate ovary at the early follicular phase of the
cycle is heterogeneous in their capacity to grow in an FSH-
replete milieu. Their growth rate may depend upon their
ability to recognize or respond to FSH (Kreeger et al.
2005) or other hormones (e.g. insulin, see below), or to
synthesize and respond to other local factors that
modulate follicular growth. For example, the hetero-
geneity of the small preantral follicle pool is supported
by the proportion of size-matched preantral follicles in
the marmoset ovary that immunolocalized AMH
(Thomas et al. 2007).

In addition, the proportion of follicles in the three
groups and their growth rates differed as a function of
animal age. The NG follicles were observed and
exhibited minimal growth in all the three age groups.
However, the SG follicles from young adult animals grew
faster and reached a larger size than those from
prepubertal monkeys. Moreover, the FG follicles were
only observed in young adult group. Also during culture
with FSH, follicles from young adult animals yielded
more healthy GV-intact oocytes with larger diameters
than those from prepubertals. The latter observation is
consistent with the report that FSH treatment of post-
menarcheal rhesus monkeys yielded more mature
oocytes with higher development potential during IVF
than treatment of juveniles (Yang et al. 2009). In different
species, including primates, FSH receptor expression
increases during early folliculogenesis, and the receptors
remain on granulosa cells of healthy follicles until they
become atretic or luteinize (Findlay & Drummond
1999). Again, it is possible that compared with follicles
from young adults, the FSH receptor expression and
signaling pathway were not fully developed in follicles
from prepubertal ovaries. Likewise, the FG follicles were
not obtained from older adult culture group, and few
healthy GV-intact oocytes retrieved may relate to
decreased FSH receptor expression and signaling
through aging.

During encapsulated 3D culture, the addition of LH at
day 30 (after antrum formation) had no effect on the
survival and further growth of primate follicles. This is
consistent with in vivo evidence that antral follicular
development can occur in the presence of minimal
(hypogonadal) levels of LH in monkeys (Zelinski-Wooten
et al. 1995) and women (Schoot et al. 1994, Kumar et al.
1997). However, LH administration markedly increased
ovarian steroid production in the SG follicles. The
increased androgen and estrogen levels are consistent
Reproduction (2010) 140 685–697
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with the 2-cell, 2-gonadotropin model wherein LH
receptor signaling promotes A4 production by theca
cells, which allows steroidogenic maturation of the
follicles by providing A4 as substrate for E2 production in
the granulosa cells (McNatty et al. 1980). Elevated P4

levels in the culture media may represent substrate for
A4 and E2 production or be a sign of luteinization in
follicles with degenerate oocytes (Fauser & Van Heusden
1997). In contrast, an LH effect on steroidogenesis was
not observed in the FG follicles. This may be due to the
high steroid production prior to the LH addition, which
prevented further stimulation. In our previous study,
continuous LH exposure during follicle culture pro-
moted E2, but not A4 and P4, production (Xu et al.
2009a). This may result from the desensitizing of LH
receptors by continuous LH exposure or by not
distinguishing SG from FG follicles. Our current data
also indicate that LH had no effect on AMH and VEGF
production during follicle culture. Since AMH levels
declined to baseline at antrum formation, this transient
follicular activity preceded LH exposure at day 30 of
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culture. In contrast, VEGF production, at least by
granulosa cells, appears to reach the capacity in the
large preovulatory follicle and is regulated by surge
levels of gonadotropin (Ravindranath et al. 1992,
Christenson & Stouffer 1997). This study suggests that
low nonsurge levels of LH do not promote VEGF
production by small antral follicles.

Insulin may regulate various intracellular processes in
the follicle such as amino acid transport, lipid meta-
bolism, gene transcription, and protein synthesis (Louhio
et al. 2000). Insulin receptors are expressed in mamma-
lian ovaries; its mRNA and protein are located in theca,
granulosa, and stromal cells of antral follicles in women
(el-Roeiy et al. 1993, Samoto et al. 1993). Insulin
receptor gene expression was also detected in in vitro
matured oocytes from small antral follicles in monkeys
(Zheng et al. 2007). In this study, it was observed that
insulin had no effect on follicle survival, but at the higher
dose, it promoted further growth of the FG follicles from
young adult animals after 3 weeks of culture. This was
the time when the follicles reached R400 mm in
diameter, and the antral cavity started to form. Also,
more healthy GV-intact oocytes were retrieved and their
sizes tended to be larger in the follicles cultured with
high-dose insulin. Our results support previous reports
that insulin had a positive effect on ovarian folliculogen-
esis and oocyte maturation, including human follicular
growth in vitro (Wright et al. 1999). However, an in vitro
study on murine cumulus–oocyte complexes (COC)
indicated that insulin can have profound detrimental
effects on oocyte developmental competence (Eppig
et al. 1998). Insulin or FSH may also modulate local
insulin-like growth factor (IGF) activity, which was
suggested to improve the viability of cultured follicles
in primates (Louhio et al. 2000). Further studies on the
effects of insulin and IGFs, both of which are present at
appreciable levels in follicular fluid of primate antral
follicles (Brogan et al. 2010), on follicle growth and
oocyte quality are warranted in primates.

Follicle growth rate correlated with steroid hormone
production in vitro. Unlike NG follicles, the SG and FG
follicles produced appreciable levels of A4, E2, and P4

within 5 weeks of culture in the encapsulated 3D system.
Media steroid levels first increased when the antrum
appeared as similarly reported in mouse follicles in
culture (West-Farrell et al. 2009). Since A4 production is
generally limited to the theca layer (Tamura et al. 1992),
this encapsulated 3D system may support theca cell
development or function in macaque, as well as in
mouse (Xu et al. 2006), follicles. Interestingly, this
steroidogenic process was observed in follicles cultured
with high-dose, but not low-dose, insulin. In mammals,
insulin has been shown to promote theca and
granulosa cell steroidogenesis (Barbieri et al. 1984,
Erickson et al. 1990, Langhout et al. 1991). Thus, insulin/
IGFs may be an important regulator of primate theca–
granulosa differentiation and steroidogenesis in vitro.
www.reproduction-online.org
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Despite exposure to the same dose of insulin, cultured
follicles from prepubertal and older adult animals
displayed lower ovarian steroid levels in the media.
This may be due to lower FSH sensitivity of the follicles
as described above (Davoren & Hsueh 1984). Follicle
growth may be delayed, and follicle function may be
impaired in prepubertal and older adults if insulin-
enhanced FSH-stimulated steroidogenesis is lacking.

This study provided the first quantitative assessment of
AMH production by isolated primate preantral follicles.
AMH production by early preantral follicles correlated
positively with growth rate, i.e. the FG follicles produced
greater levels than the SG follicles, with lesser pro-
duction by the NG follicles. AMH production displayed
a transient increase at culture week 2 and decreased by
antrum formation. Previous studies localized AMH
mRNA or protein to granulosa cells of preantral and
small antral follicles, which diminished in the sub-
sequent stages of follicle development; expression was
also absent in atretic follicles and the corpus luteum
(Durlinger et al. 2002, Weenen et al. 2004, Thomas et al.
2007). Thus, early AMH production may be a potential
marker for predicting further development of cohorts of
preantral follicles with different growth rates during
culture, prior to any differences in follicle diameter and
steroidogenic capacity. Efforts continue attempting to
elucidate the role of AMH on follicular function (Visser
et al. 2007, La Marca et al. 2009). The addition of AMH
into cultures of human or rat ovarian cortical strips,
improved the recruitment, survival, and growth of
primordial follicles (McGee et al. 2001, Schmidt et al.
2005) suggesting a stimulatory role of AMH on very early
follicular development. However, a direct role for AMH
on primary or secondary follicle function has yet to be
demonstrated. AMH may not only be a marker, but also
an important local factor regulating follicle growth in
encapsulated 3D culture system.

This study also demonstrated, for the first time, that
small antral follicles in primates produce VEGF. Media
VEGF levels increased at culture week 3 during antrum
formation, correlated with growth rate, and were greatest
in the FG follicles. The pattern is consistent with previous
in vivo studies that VEGF mRNA (Ravindranath et al.
1992) and protein (Yamamoto et al. 1997) were
expressed in the theca cells of antral follicles and
granulosa cells nearest the oocyte in the preovulatory
follicle of primates, but not in the granulosa cells of
primordial and preantral follicles. VEGF likely plays an
angiogenic role during antrum development when the
theca layer acquires a vascular sheath to provide an
increased supply of gonadotropins, growth factors,
oxygen, and steroid precursors to the growing follicle
(Stouffer et al. 2001). Increased VEGF production by the
SG and FG follicles in encapsulated 3D culture may
indicate achievement of a size and maturation state in
the follicle, at the antral stage, that requires vasculariza-
tion to achieve further development in vivo with
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additional substrates and release of hormones. Besides
an angiogenic action, VEGF may also be a cytoprotective
factor in the extravascular granulosa cell compartment.
Co-expression of VEGF and its receptor reportedly
protects bovine granulosa cells from apoptotic cell
death and follicle atresia (Greenaway et al. 2004).
VEGF may also promote nuclear and cytoplasmic
maturation of bovine oocytes in vitro (Luo et al. 2002).
Given that increasing follicle diameter correlated
positively with increased VEGF production, VEGF may
play a role during follicle development and/or be a
marker of follicle quality in vitro.

In addition to appreciable number of degenerate
oocytes, the healthy oocytes within the SG or FG
follicles after 40 days of culture did not respond to
rhCG treatment with reinitiation of meiotic maturation
and remained at the GV-intact stage. In order to acquire
meiotic competence, the oocytes need to grow and
reach a stage at which they are able to activate cyclin-
dependent protein kinase (CDC2) and MAP kinases
(Miyano & Manabe 2007). Chromatin configurations
and meiotic competence of oocytes are related to
follicular diameter as reported in rodents (Erickson &
Sorensen 1974, Iwamatsu & Yanagimachi 1975) and
nonstimulated rhesus monkeys. Limited data from rhesus
monkeys suggest that 56% of oocytes from large antral
follicles (O1000 mm in diameter) completed maturation,
whereas few (9%) oocytes from small antral follicles
(200–450 mm in diameter) were competent to mature
in vitro (Schramm et al. 1993). The current culture systems
need to be improved to promote further follicle growth,
as well as the health and further growth of the oocytes to
reach the size of those that mature in vivo, which is over
100 mm in diameter in macaque (Buse et al. 2008). Gap
junctional communication within the COC matrix is
likely critical for oocyte metabolism, maturation, and
meiotic progression in primates, as in other species
(Kimura et al. 2007). However, the cumulus–oocyte
communication could be compromised by the current
milieu and extended interval of encapsulated 3D
culture, such that oocytes cannot achieve the compe-
tence to undergo meiotic or cytoplasmic maturation.
Future studies on the characteristics of COC of antral
follicles derived from secondary follicles during encap-
sulated 3D culture are warranted.

Thus, advances in an encapsulated 3D culture of
nonhuman primate secondary follicles to the small antral
stage provide a model to study indices of follicle
development with individual follicles. This model offers
an opportunity to characterize the endocrine and
paracrine function of primate follicles that influence
follicle growth and oocyte maturation, with relevance to
translational efforts to grow human follicles in vitro.
By achieving the goal of producing competent oocytes,
in vitro follicle maturation may offer a means to enhance
fertility preservation options in women.
Reproduction (2010) 140 685–697
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Materials and Methods

Animals and ovary collection

The general care and housing of rhesus macaques were
provided by the Division of Animal Resources at the Oregon
National Primate Research Center (ONPRC). Animals, different
from those used in our previous study (Xu et al. 2009a), were
pair caged in a temperature-controlled (22 8C) light-regulated
12 h light:12 h darkness room. Diet consisted of Purina
monkey chow (Ralston-Purina, Richmond, IN, USA) provided
twice a day, supplemented with fresh fruit or vegetables once a
day and water made available ad libitum. Animals were treated
according to the National Institutes of Health Guide for the
Care and Use of Laboratory Animals and protocols approved by
the ONPRC Institutional Animal Care and Use Committee.

Young adult female rhesus macaques (nZ3; 4–11 years of
age) exhibiting regular menstrual cycles of w28 days were
evaluated daily for menstruation with the first day of menses
being termed day 1 of the cycle. Ovariectomies were
conducted on anesthetized monkeys by laparoscopy at early
follicular phase, days 1–3 of the cycle, as described previously
(Duffy & Stouffer 2002). Ovaries were also obtained from
prepubertal (nZ3, 1–3 years of age) and regular cycling, older
adult (nZ3, 13–16 years of age) monkeys. Ovaries were
immediately transferred into HEPES-buffered holding media
(CooperSurgical, Inc., Trumbull, CT, USA) supplemented with
0.2% (v/v) human serum protein supplement (SPS; Cooper-
Surgical, Inc.) and 10 mg/ml gentamicin (Sigma–Aldrich).
Follicle isolation, encapsulation, and culture

Follicle isolation and encapsulation were carried out as
described previously (Xu et al. 2009a). Briefly, the ovarian
cortex was cut into 2!2!1 mm cortical strips and incubated
in 6 ml holding media (as described above) containing
275 U/ml collagenase type I and 585 U/ml DNase I
(Worthington Biochemical Corp., Lakewood, NJ, USA) at
37 8C for 30 min. Follicles were mechanically isolated in the
holding media (as described above) using 31-gauge needles,
and the secondary follicles with diameters of 125–225 mm that
displayed the following characteristics were selected for
encapsulation: i) no clear antral cavity, ii) an intact basement
membrane with attached stroma, and iii) a visible oocyte that
was round and centrally located within the follicle.

Follicles were transferred individually into 5 ml 0.25% (w/v)
sterile sodium alginate (FMC BioPolymers, Philadelphia, PA,
USA) in PBS (137 mM NaCl, 10 M phosphate, 2.7 mM KCl,
Invitrogen), and the droplets were crosslinked in 50 mM CaCl2
and 140 mM NaCl solution for 2 min. Each alginate-encapsu-
lated follicle was then transferred into individual wells of
48-well plates containing 300 ml a minimum essential medium
(Invitrogen) supplemented with 0.3% SPS, 1 mg/ml bovine
fetuin, 5 mg/ml transferrin, and 5 ng/ml sodium selenite
(Sigma–Aldrich).

Encapsulated follicles were cultured at 37 8C in 5% (v/v) CO2

in air atmosphere in the absence or presence of 500 mIU/ml
rhFSH (NV Organon, Oss, The Netherlands) and 0.05 or
5 mg/ml insulin (low or high dose, Sigma–Aldrich) for 30 days.
Thereafter, half of the follicles in each culture condition
Reproduction (2010) 140 685–697
received 10 mIU/ml rhLH (Ares-Serono, Inc., Randolph, MA,
USA) in the media from days 30–40. Follicles that reached the
antral stage were treated with 100 ng/ml rhCG (Merck Serono)
for 34 h. Oocytes were then retrieved to determine compe-
tence for meiotic maturation. Half of the culture media (150 ml)
was collected and replaced every other day and stored at
K20 8C. The three media samples from each culture week
were assigned to ovarian steroids, AMH, and VEGF assays.
Follicle survival, growth, and oocyte maturation

Follicle survival, diameter, and antrum formation were assessed
weekly using an Olympus CK40 inverted microscope and an
Olympus DP11 digital camera (Olympus Imaging America,
Inc., Center Valley, PA, USA) as described previously (Xu et al.
2009a). Follicles were measured from the outer layer of cells,
which included a measurement at the widest diameter of the
follicle and a second measurement perpendicular to the first.
The mean of these values was then calculated and reported as
the follicle diameter. Any clumps of presumptive discontinuous
stromal cells (Fig. 1B–D) were not included. Follicles were
considered undergoing atresia if the oocyte was dark or not
surrounded by a layer of granulosa cells, the granulosa cells
became dark and fragmented, or the diameter of the follicle
decreased. Follicle photographs were imported into ImageJ
1.42 software (National Institutes of Health, Bethesda, MD,
USA), and the diameter of each follicle was measured.
Retrieved oocytes were also photographed, and oocyte
diameters were measured using the same camera and software
as described above.
Ovarian steroids, AMH, and VEGF assays

Media collected during culture weeks 1–5 were analyzed for E2

and P4 concentrations by the Endocrine Technology Support
Core at the ONPRC using an Immulite 2000, a chemi-
luminescence-based automatic clinical platform (Siemens
Healthcare Diagnostics, Deerfield, IL, USA), according to the
manufacturers’ protocol as reported previously (Xu et al.
2009a). Media A4 levels were measured by RIA using a DSL-
3800 kit (Diagnostic Systems Laboratories, Inc., Webster, TX,
USA). The assay was validated for parallelism with
blank culture media containing a known concentration
of A4, and with media used in culture with monkey follicles.
The sensitivity of the assay was 0.1 ng/ml for 50 ml sample.
The standard curve of the assay ranged 0.1–10 ng/ml. The
coefficient of variation (CV) values for standard points
(in duplicate) at 0, 0.1, 0.3, 1.0, 3.0, and 10.0 ng/ml in the
assays were 0.7, 0.5, 1.4, 1.8, 0.1, and 1.5% respectively.

Media collected during culture weeks 1–5 were analyzed for
AMH concentrations by ELISA using a DSL-10-14400 kit
(Diagnostic Systems Laboratories, Inc.) based on the manu-
facturers’ instructions (Fréour et al. 2007). The assay was
validated for parallelism with blank culture media containing a
known concentration of AMH, and with media used in culture
with monkey follicles. The sensitivity of the assay was 0.05 ng/ml
for 20 ml sample. The standard curve of the assay ranged
0.05–14 ng/ml. The CV values for standard points (in duplicate)
at 0, 0.05, 0.1, 0.26, 2.0, 7.8, and 14.0 ng/ml in the assays were
www.reproduction-online.org
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1.6, 5.0, 1.5, 2.8, 1.7, 3.6, and 1.9% respectively. Extensive
validation experiments revealed that fetuin in the culture
media crossreacted with the AMH antibody. Therefore, levels
assayed in media containing fetuin without cultured follicles
were subtracted from AMH levels in media samples from
follicle culture.

Media from culture weeks 1–5 were also assayed for VEGF
concentrations using a Human VEGF Quantikine ELISA
Kit (R&D Systems, Minneapolis, MN, USA) as validated
previously for macaque serum and culture media (Christenson
& Stouffer 1997).
Statistical analysis

Statistical significance was analyzed by SigmaPlot 11 software
(SPSS, Inc., Chicago, IL, USA) using a two-way ANOVA with
repeated measures or one-way ANOVA followed by the
Student Newman–Keuls post hoc test for single time points.
Differences were considered significant at P!0.05, and values
are presented as meanGS.E.M.
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