Oncofertility Publications
We would like to share with you the Oncofertility Publications List on PubMed (since 2007 till now):
We urge authors from our network to include “Oncofertility” in the keywords of their publications to be easily identified in our records on PubMed.
Thank you so much for your continued support and partnership!
Publications Archive
Animal age, weight and estrus cycle stage impact the quality of in vitro grown follicles
Abstract
BACKGROUND:
Ovarian tissue cryopreservation is an emerging fertility preservation option, and culturing follicles isolated from this tissue to obtain mature gametes may ultimately be the best solution for patients for whom transplantation is contraindicated. It is unclear, however, how patient-specific variables (including age, weight and menstrual cycle stage) impact follicle growth and quality during three-dimensional culture.
METHODS:
We used a mouse model to systematically determine how these variables impact in vitro follicle growth. We characterized metabolic and hormonal profiles of mice at specific ages, weights and cycle stages and secondary follicles from these cohorts were isolated and cultured. We then assessed follicle survival, growth and function, as well as meiotic competence and spindle morphology of the resulting oocytes.
RESULTS:
We found that older mice and mice with increased body weight had higher serum cholesterol, abnormal glucose tolerance and lower levels of circulating Anti-Müllerian hormone compared with younger and leaner controls. Secondary follicles isolated from different cohorts and grown in vitro had indistinguishable growth trajectories. However, the follicles isolated from older and heavier mice and those in diestrus had altered hormone profiles. These follicles contained oocytes with reduced meiotic competence and produced oocytes with greater spindle defects.
CONCLUSIONS:
These results suggest that the original physical environment of the follicle within the ovary can impact its function when isolated and cultured. These findings are valuable as we begin to use in vitro follicle growth technology for a heterogeneous fertility preservation patient population.
Hirshfeld-Cytron JE, Duncan FE, Xu M, Jozefik JK, Shea LD, Woodruff TK. Hum Reprod. 2011 Sep;26(9):2473-85. Epub 2011 Jun 13. PMID: 21669966
Encapsulated Three-Dimensional Culture Supports Development of Nonhuman Primate Secondary Follicles
Abstract
In vitro ovarian follicle cultures may provide fertility-preserving options to women facing premature infertility due to cancer therapies. An encapsulated three-dimensional (3-D) culture system utilizing biomaterials to maintain cell-cell communication and support follicle development to produce a mature oocyte has been developed for the mouse. We tested whether this encapsulated 3-D system would also support development of nonhuman primate preantral follicles, for which in vitro growth has not been reported. Three questions were investigated: Does the cycle stage at which the follicles are isolated affect follicle development? Does the rigidity of the hydrogel influence follicle survival and growth? Do follicles require luteinizing hormone (LH), in addition to follicle-stimulating hormone (FSH), for steroidogenesis? Secondary follicles were isolated from adult rhesus monkeys, encapsulated within alginate hydrogels, and cultured individually for </=30 days. Follicles isolated from the follicular phase of the menstrual cycle had a higher survival rate (P < 0.05) than those isolated from the luteal phase; however, this difference may also be attributed to differing sizes of follicles isolated during the different stages. Follicles survived and grew in two hydrogel conditions (0.5% and 0.25% alginate). Follicle diameters increased to a greater extent (P < 0.05) in the presence of FSH alone than in FSH plus LH. Regardless of gonadotropin treatment, follicles produced estradiol, androstenedione, and progesterone by 14-30 days in vitro. Thus, an alginate hydrogel maintains the 3-D structure of individual secondary macaque follicles, permits follicle growth, and supports steroidogenesis for </=30 days in vitro. This study documents the first use of the alginate system to maintain primate tissue architecture, and findings suggest that encapsulated 3-D culture will be successful in supporting the in vitro development of human follicles.
Min Xu, Erin R. West-Farrell, Richard L. Stouffer, Lonnie D. Shea, Teresa K. Woodruff, and Mary B. Zelinski; Biology of Reproduction(3):587-94 Sep.8, 2009
Hydrogel Network Design Using Multifunctional Macromers to Coordinate Tissue Maturation in Ovarian Follicle Culture
Abstract
Synthetic hydrogels with tunable properties are appealing for regenerative medicine. A critical limitation in hydrogel design at low solids concentration is the formation of defects, which increase gelation times and swelling, and reduce elasticity. Here, we report that trifunctional cross-linking peptides applied to 4-arm poly-(ethylene glycol) (PEG) hydrogels decreased swelling and gelation time relative to bi-functional crosslinkers. In contrast to bi-functional peptides, the third cross-linking site on the peptide created a branch point if an intramolecular cross-link formed, which prevented non-functional “dangling-ends” in the hydrogel network and enhanced the number of elastically active cross-links. The improved network formation enabled mouse ovarian follicle encapsulation and maturation in vitro. Hydrogels with bi-functional crosslinkers resulted in cellular dehydration, likely due to osmosis during the prolonged gelation. For trifunctional crosslinkers, the hydrogels supported a 17-fold volumetric expansion of the tissue during culture, with expansion dependent on the ability of the follicle to rearrange its microenvironment, which is controlled through the sensitivity of the cross-linking peptide to the proteolytic activity of plasmin. The improved network design enabled ovarian follicle culture in a completely synthetic system, and can advance fertility preservation technology for women facing premature infertility from anticancer therapies.
Shikanov A, Smoith R M., Xu M, Woodruff T K., Shea L D. Biomaterials. 2011. April; 32(10): 2524-31.
Identification of a Stage-Specific Permissive In Vitro Culture Environment for Follicle Growth and Oocyte Development
Abstract
The availability of viable oocytes is the limiting factor in the development of new reproductive techniques. Many attempts have been made to grow immature oocytes in vitro during recent decades. Recently, a modified alginate-based three-dimensional culture system was designed to support the growth and maturation of multilayered secondary follicles. This system was able to produce oocytes that successfully completed meiosis, fertilization, and development to the blastocyst stage. Subsequent attempts to culture two-layered secondary follicles were unsuccessful under the original conditions. Herein, we investigated the effect of alginate consistency on two-layered follicle growth and oocyte developmental competence by encapsulating follicles into alginate scaffolds of various concentrations. Although there were no significant differences in survival rates, 0.25% and 0.5% alginate supported more rapid growth of follicles and antrum formation compared with 1.5% and 1.0% alginate after 8 days of culture. Alginate scaffold concentration also affected the proliferation and differentiation of somatic cells (theca and granulosa cells), measured in terms of morphological changes, steroid profiles (androstenedione, estradiol, and progesterone), and specific molecular markers (Fshr, Lhcgr, and Gja1). Theca cell proliferation and steroid production were hindered in follicles cultured in 1.5% alginate. In vitro fertilization and embryo culture revealed that oocytes obtained from 0.25% alginate retained the highest developmental competence. Overall, the present study showed that the alginate scaffold consistency affects folliculogenesis and oocyte development in vitro and that the alginate culture system can and should be tailored to maximally support follicle growth depending on the size and stage of the follicles selected for culture.
Min Xu, Erin West, Lonnie D. Shea, and Teresa K. Woodruff; Biology of Reproduction Vol 75 916-923 Sep 6 2006
In Vitro Grown Human Ovarian Follicles From Cancer Patients Support Oocyte Growth
Abstract
BACKGROUND:
Young female adult and adolescent cancer patients facing life-preserving but fertility-threatening chemo- or radiation-therapy are increasingly seeking options to protect their reproductive potential. Ovarian tissue cryopreservation with transplantation is a promising technique to safeguard fertility in cancer patients. However, this method may risk re-introduction of the original cancer to the survivor of the disease. Thus, developing a method for in vitro growth of immature follicles may provide a method for fertility restoration in the future.
METHODS:
Human secondary follicles were isolated from ovarian tissues obtained from cancer patients and grown in vitro within a bio-engineered culture system for 30 days.
RESULTS:
Human ovarian follicles became steroidogenically active, and developed from the early secondary to antral stage in vitro. The follicles contained healthy, growing oocytes that were connected by transzonal projections between the somatic cells and oocyte.
CONCLUSIONS:
Our data support the notion that human follicle development can be achieved in vitro in a bio-engineered culture system. More studies are required to investigate whether the fully sized oocytes obtained from in vitro grown follicle are competent to resume meiosis and be fertilized.
Min Xu, Susan L. Barrett, Erin West-Farrell, Laxmi A. Kondapalli,, Sarah E. Kiesewetter, Lonnie D. Shea, and Teresa K. Woodruff; Human Reproduction Vol.24, No.10 2531-40 Oct. 24, 2009
In Vitro Oocyte Maturation and Preantral Follicle Culture from the Luteal Phase Baboon Ovary Produce Mature Oocytes
Female cancer patients who seek fertility preservation but cannot undergo ovarian stimulation and embryo preservation may consider: 1) retrieval of immature oocytes followed by in vitro maturation (IVM); 2) ovarian tissue cryopreservation followed by transplantation or in vitro follicle culture (IVFC). Conventional IVM is carried out during the follicular phase of menstrual cycle. There is limited evidence demonstrating that immature oocyte retrieved during the luteal phase can mature in vitro and be fertilized to produce viable embryos. While in vitro follicle culture is successful in rodents, its application in nonhuman primates has made limited progress. The objective of this study was to investigate the competence of immature luteal-phase oocytes from baboon and to determine the effect of FSH on baboon preantral follicle culture and oocyte maturation in vitro. Oocytes from small antral follicle COCs with multiple cumulus layers (42%) were more likely to resume meiosis and progress to MII than oocytes with a single layer of cumulus cells, or less (23% vs. 3%, respectively). Twenty-four percent of mature oocytes were successfully fertilized by ICSI, and 25% of these developed to morula stage embryos. Preantral follicles were encapsulated in fibrin-alginate-matrigel (FAM) matrices, and cultured to small antral stage in a FSH-independent manner. FSH negatively impacted follicle health by disrupting the integrity of oocyte and cumulus cells contact. Follicles grown in the absence of FSH produced MII oocytes with normal spindle structure. In conclusions, baboon luteal-phase COCs and oocytes from cultured preantral follicles can be matured in vitro. Oocyte meiotic competence correlated positively with the number of cumulus cell layers. This study clarifies the parameters of the follicle culture system in nonhuman primates and provides foundational data for future clinical development as a fertility preservation option for women with cancer.
Xu M, Fazleabas AT, Shikanov A, Jackson E, Barrett SL, Hirshefeld-Cytron J, Kiesewetter SE, Shea LD, Woodruff TK.
Interpenetrating Fibrin–Alginate Matrices For In Vitro Ovarian Follicle Development
Abstract
In this report, we investigate the fibrin-alginate interpenetrating network (FA-IPN) to provide dynamic cell-responsive mechanical properties, which we apply to the in vitro growth of ovarian follicles. The mechanical properties and polymerization rate of the gels were investigated by rheology, and the fiber structure was imaged by electron microscopy. Using a mouse model, two-layered secondary follicles were encapsulated in FA-IPNs, and growth, morphology, hormone production, fibrin degradation rate and the numbers of competent eggs were assessed. The initial mechanics of the FA-IPN are determined by the composite material, and subsequent degradation of fibrin by the encapsulated cells would produce a material with mechanical properties due to the alginate alone. The rate of meiotically competent oocytes produced by culture in FA-IPN was 82%, which was significantly greater than in alginate alone. This increase in oocyte quality is an important step in identifying 3D culture systems that can provide a fundamental tool to investigate follicle maturation, and may be applied to promote the growth of human follicles, which can be used to provide reproductive options for women facing a cancer diagnosis.
Ariella Shikanov, Min Xu, Teresa K. Woodruff, Lonnie D. Shea; Biomaterials Vol. 29 5476-85 Oct 30, 2009
Nonmalignant Diseases and Treatments Associated with Primary Ovarian Failure: An Expanded Role for Fertility Preservation
Abstract:
Cancer treatments can be detrimental to fertility; recent literature has focused on the efforts of fertility preservation for this patient population. It should be recognized, however, that several nonmalignant medical conditions and therapeutic interventions could be similarly hazardous to fertility. Some of these nonmalignant diseases and their treatments that can adversely impact the reproductive axis are gastrointestinal diseases, rheumatologic disorders, nonmalignant hematologic conditions, neurologic disorders, renal disorders, gynecologic conditions, and metabolic diseases. Their negative effects on reproductive function are only now being appreciated and include impaired ovarian function, endocrine function, or sexual function and inability to carry a pregnancy to term. Complications and comorbidities associated with certain diseases may limit the success of established fertility preservation options. Recent advances in fertility preservation techniques may provide these patients with new options for childbearing. Here, we review several fertility-threatening conditions and treatments, describe current established and experimental fertility preservation options, and present three initiatives that may help minimize the adverse reproductive effects of these medical conditions and treatments by raising awareness of the issues and options: (1) increase awareness among practitioners about the reproductive consequences of specific diseases and treatments, (2) facilitate referral of patients to fertility-sparing or restorative programs, and (3) provide patient education about the risk of infertility at the time of diagnosis before initiation of treatment.
Hirshfeld-Cytron J, Gracia C, Woodruff T K. Nonmalignant Diseases and Treatments Associated with Primary Ovarian Failure: An Expanded Role for Fertility Preservation. J Womens Health (Larchmt). 2011 Aug 9. PMID: 21827325
Phylogenomic Analyses Reveal the Evolutionary Origin of the Inhibin a-Subunit, a Unique TGFb Superfamily Antagonist
Abstract
Transforming growth factor-beta (TGFbeta) homologues form a diverse superfamily that arose early in animal evolution and control cellular function through membrane-spanning, conserved serine-threonine kinases (RII and RI receptors). Activin and inhibin are related dimers within the TGFbeta superfamily that share a common beta-subunit. The evolution of the inhibin alpha-subunit created the only antagonist within the TGFbeta superfamily and the only member known to act as an endocrine hormone. This hormone introduced a new level of complexity and control to vertebrate reproductive function. The novel functions of the inhibin alpha-subunit appear to reflect specific insertion-deletion changes within the inhibin beta-subunit that occurred during evolution. Using phylogenomic analysis, we correlated specific insertions with the acquisition of distinct functions that underlie the phenotypic complexity of vertebrate reproductive processes. This phylogenomic approach presents a new way of understanding the structure-function relationships between inhibin, activin, and the larger TGFbeta superfamily.
Jie Zhu, Edward L. Braun, Satomi Kohno, Monica Antenos, Eugene Y. Xu, Robert W. Cook, S. Jack Lin, Brandon C. Moore, Louis J. Guillette, Jr., Theodore S. Jardetzky, Teresa K. Woodruff. PLoS One, Volume 5, Issue 3, March 2010.
Physical Properties of Alginate Hydrogels and Their Effects On In Vitro Follicle Development
Abstract
The mechanical properties and density of natural and synthetic extracellular matrices are known to affect cellular processes and regulate tissue formation. In this report, these factors were independently investigated for their role in ovarian follicle development. The matrix composition was controlled through decreasing the solids concentration or the molar mass of the encapsulating biomaterial, alginate. Decreasing matrix stiffness and solids concentration enhanced follicle growth and coordinated differentiation of the follicle cell types, as evidenced by antral cavity formation, theca cell differentiation, oocyte maturation, and relative hormone production levels. While a stiff environment favored high progesterone and androgen secretion, decreasing alginate stiffness resulted in estrogen production which exceeded progesterone and androgen accumulation. These studies reveal, for the first time, a direct link between the biomechanical environment and follicle function, and suggest a novel non-hormonal mechanism regulating follicle development.
Erin R. West, Min Xu, Teresa K. Woodruff, Lonnie D. Shea; Biomaterials Vol 30 4439-48 Oct 2007
Preserving oocytes from chemodestruction
Chemotherapy can save the lives of many individuals with cancer. Unfortunately, it usually cause infertility after treatment, posing a concern for these people who will face a lifetime condition that considerably limits the quality of their lives. Advances in the field of oncofertility have brought hope to cancer survivors who long to plan a family; however, standard approaches only rely on cryopreservation of sperms and eggs before treatment and do not prevent infertility. In ‘Bedside to Bench’, Min Xu, Mary Ellen Pavone and Teresa Woodruff examine a study where individuals treated with gonadotropin-releasing hormone (GnRH) agonists before cancer therapy showed a decreased risk of infertility. How these agonists work to suppress and protect ovarian function and increase fertility in women after treatment is still unclear and begs further investigation at the bench.
Secondary Follicle Growth and Oocyte Maturation by Culture in Alginate Hydrogel Following Cryopreservation of the Ovary or Individual Follicles
Abstract
An option for fertility preservation for women facing a cancer diagnosis involves the cryopreservation of ovarian tissue for later re-transplantation or in vitro culture, with in vitro culture preferred to avoid reintroduction of the cancer. Small, immature follicles survive the freeze-thaw process, and can be matured through in follicle maturation (IFM) that involves an initial growth of the follicle and subsequent maturation of the oocyte. The ovarian tissue can be cryopreserved in two forms: (i) cortical strips consisting of follicles and surrounding stroma (Cryo-Ov) or (ii) individually isolated follicles (Cryo-In). The aim of this study was to assess the follicle growth and oocyte maturation for follicles that were cryopreserved either as strips or individually using a slow-freezing cryopreservation method. The two follicle groups, together with non-cryopreserved control follicles, were grown in an alginate-based three-dimensional culture system for 12 days. The overall survival, size increase and antrum formation rates were comparable among the three groups. At day 12 of culture, Androstenedione levels were decreased in the Cryo-Ov group relative to the other two, and the ratio of progesterone to estradiol was increased in the two cryopreserved groups relative to the control. Both Gja1 (known as connexin 43) and Gja4 (known as connexin 37) mRNA expression were decreased at day 6 in the cryopreserved groups relative to controls, and by day 12, Gja1 was similar for all three groups. Moreover, Cryo-In resulted in lower GVBD rate indicating some impaired oocyte development. Overall, the present study demonstrated that mouse preantral follicles, either within ovarian tissues or individually isolated, could be successfully cryopreserved by the slow-freezing method, as evidenced by post-thaw follicle development and steroidgenesis, oocyte maturation and molecular markers for oocyte and/or granulosa cells connection.
Min Xu, Anna Banc, Teresa K. Woodruff, Lonnie D. Shea; Biotechnology and Bioengineering, Vol. 103, No. 2, June 1, 2009
Secondary follicle growth and oocyte maturation during encapsulated three-dimensional culture in rhesus monkeys: effects of gonadotrophins, oxygen and fetuin.
Abstract
BACKGROUND:
An alginate-based matrix supports the three-dimensional (3D) architecture of non-human primate follicles and, in the presence of FSH, permits the in vitro development of pre-antral follicles to the small antral stage, including the production of ovarian steroids and paracrine factors. The current study investigated the ability of gonadotrophins, fetuin and oxygen (O2) to improve primate follicle growth and oocyte maturation in vitro.
METHODS:
Macaque secondary follicles were isolated from the early follicular phase ovaries, encapsulated in a sodium alginate matrix and cultured individually for 40 days in supplemented medium. The effects of recombinant human (rh) FSH (15, 3 and 0.3 ng/ml for high, medium and low FSH, respectively), bovine fetuin (1 or 0 mg/ml) and O2 (5 or 20% v/v) were examined. Half of the follicles in each culture condition received rhLH on Day 30 –40. Follicles that reached antral stage were treated with rh chorionic gonadotrophin for 34 h to initiate oocyte meiotic maturation. Media were analyzed for ovarian steroids and anti-mu¨ llerian hormone (AMH).
RESULTS:
Improved culture conditions supported non-human primate, secondary follicle growth to the antral stage and, for the first time, promoted oocyte maturation to the MII stage. In the presence of fetuin at 5% O2, follicles had the highest survival rate if cultured with high or medium FSH, whereas follicles grew to larger diameters at Week 5 in low FSH. Oocyte health and maturation were promoted under 5% O2. High FSH stimulated steroid production by growing follicles, and steroidogenesis by follicles cultured with low FSH was promoted by LH. AMH biosynthesis was elevated with high compared with low FSH and for longer under 5% O2 than under 20% O2.
CONCLUSIONS:
This encapsulated 3D culture model permits further studies on the endocrine and local factors that influence primate follicle growth and oocyte maturation, with relevance to enhancing fertility preservation options in women.
Xu J, Lawson MS, Yeoman RR, Pau KY, Barrett SL, Zelinski MB, Stouffer RL. Secondary follicle growth and oocyte maturation during encapsulated three-dimensional culture in rhesus monkeys: effects of gonadotrophins, oxygen and fetuin. Hum Reprod. 2011 Feb 28. [Epub ahead of print]
The Mouse Follicle Microenvironment Regulates Antrum Formation and Steroid Production: Alterations in Gene Expression Profiles
Abstract
Folliculogenesis is a coordinated process, and the genes that regulate development are difficult to investigate in vivo. In vitro culture systems permit the assessment of individual follicles during development, thereby enabling gene expression patterns to be monitored during follicle development. Mouse multilayered secondary follicles (150-180 microm in diameter) were cultured in three-dimensional matrices of varying physical properties for up to 8 days. During this period of follicle growth in vitro, antrum formation and steroid production were monitored, and mRNA was isolated. The expression levels of genes (Star, Cyp11a1, Cyp17a1, Hsd3b1, Cyp19a1, Fshr, Lhcgr, Aqp7, Aqp8, Aqp9, and Hif1a) were measured and correlated to follicle developmental status. Follicles that developed an antrum and produced appropriate levels of estrogen and progesterone had unchanging expression of Star, Aqp7, Aqp8, and Hif1a and a 34-fold increase in Cyp19a1 expression at Day 8 of culture and had elevated Lhcgr at Days 6 and 8 of culture. Follicles that were healthy but did not form an antrum or produce appropriate levels of steroids, however, demonstrated increasing levels of Star, Aqp7, Aqp8, and Hif1a and a 15-fold increase in Cyp19a1 at Day 8 of culture, and Lhcgr levels were not elevated until Day 8 of culture. To our knowledge, this study provides the first temporal analysis of gene expression using individual culture in alginate hydrogels that correlates growth and steroidogenesis during follicle development and identifies expression patterns in healthy follicles and in developmentally disadvantaged follicles.
Erin R. West-Farrell, Min Xu, Monica A. Gomberg, Yee Hoong Chow, Teresa K. Woodruff, and Lonnie D. Shea; BIOLOGY OF REPRODUCTION 80, 432–439 (2009)
The Structures that Underlie Normal Reproductive Function
Abstract
The mechanisms and physiology of reproductive function have fascinated scientists throughout time. Recent cellular and molecular level structural studies have provided unprecedented insights into reproductive systems and signaling networks. This ‘cutting edge’ editorial provides a recent example in each of these areas, namely, the anatomical integrity of the follicle, the molecular structure of activin with its binding partners and the molecular regulation of inhibin. These three examples of structure informing function help explain reproductive health and may provide solutions to reproductive disease.
Thomas F. Lerch, Min Xu, Theodore S. Jardetzky, Kelly E. Mayo, Ishwar Radhakrishnan, Ralph Kazer, Lonnie D. Shea, and Teresa K. Woodruff; Molecular Cell Endocrinol 267 1-5 2006
Tissue-Engineered Follicles Produce Live, Fertile Offspring
Abstract
Oocytes grown in vitro are of low quality and yield few live births, thus limiting the ability to store or bank the ova of women wishing to preserve their fertility. We applied tissue engineering principles to the culture of immature mouse follicles by designing an alginate hydrogel matrix to maintain the oocyte’s 3- dimensional (3D) architecture and cell-cell interactions in vitro. A 3D culture mimics the in vivo follicle environment, and hydrogel-encapsulated follicles develop mature oocytes within the capacity for fertilization similar to that of oocytes matured in vivo. Embryos derived from cultured oocytes fertilized in vitro and transferred to pseudopregnant female mice were viable, and both male and female offspring were fertile. Our results demonstrate that alginate hydrogel-based 3D in vitro culture of follicles permits normal growth and development of follicles and oocytes. This system creates new opportunities for discovery in follicle biology and establishes a core technology for human egg banks for preservation of fertility.
Min Xu, Pamela K. Kreeger, Lonnie D. Shea, and Teresa K. Woodruff; Tissue Engineering Vol 10 2739-46 Oct 13 2006